Detent Force Analysis and Optimization for Vertical Permanent-magnet Linear Synchronous Motor with Fractional-slot Windings

نویسندگان

  • Xiaozhuo Xu
  • Xudong Wang
  • Jikai Si
  • Haichao Feng
  • Baoyu Xu
چکیده

This paper investigates the detent force modeling and optimization of a iron-core type 16-pole 15-slot permanent magnet linear synchronous motor (PMLSM) for ropeless elevator applications. Variable network non-linear magnetic equivalent circuit (VNMEC) model is established to predict the detent force of PMLSM. The topology structure of equivalent magnetic circuit is developed and the permeance are derived and calculated. The end effect of two end teeth is essential for detent force analysis and it is focused in the modeling. Magnetic saturation of primary tooth also is taken into account and nonlinear permanence is calculated. Some 3-D finite-element numerical calculations are used to validate the feasibility of the proposed method. Then proposed VNMEC is employed to calculate and optimize the detent force considering the end tooth dimensions. In final, experimental results are further used to verify the validation of proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Thrust Ripple Reduction of Permanent Magnet Linear Synchronous Motor Based on Improved Pole Shape for Electromagnetic Launcher System

In this paper, a new design of permanent magnet linear synchronous motor (PMLSM) for electromagnetic launcher system (EMLs) has been investigated in terms of the requisite amount of average launching thrust force and thrust force ripple minimization through finite element method. EMLs are a kind of technology used to develop thrust force and launch heavy loads with different applications includ...

متن کامل

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

متن کامل

Minimization of Cogging Force in Fractional-Slot Permanent Magnet Linear Motors with Double-Layer Concentrated Windings

Abstract: Permanent magnet linear motors (PMLMs) with double-layer concentrated windings generally show significant cogging forces due to the introduction of auxiliary teeth for eliminating the end-effect induced phase unbalance, even when the fractional-slot technology is applied. This paper presents a novel approach to reduce the cogging force by adjusting the armature core dimensions in frac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013